Prove that in any triangle $A B C$ with r, R, s as inradius, circumradius and semiperimeter, respectively, holds inequality

$$
\begin{equation*}
s \leq 2 R+(3 \sqrt{3}-4) r \text { (Blundon's Inequality). } \tag{1}
\end{equation*}
$$

Solution by Arkady Alt, San Jose, California, USA.

Let $x:=\frac{r}{s-a}=\tan \frac{A}{2}, y:=\frac{r}{s-b}=\tan \frac{B}{2}, z:=\frac{r}{s-c}=\tan \frac{C}{2}$.
Then $x y+y z+z x=1, x, y, z>0$ and $\sum \frac{1}{x}=\sum \frac{s-a}{r} \Leftrightarrow$
$\frac{x y+y z+z x}{x y z}=\frac{s}{r} \Leftrightarrow r=s \cdot x y z$ and $x+y+z=\frac{r}{s-a}+\frac{r}{s-b}+\frac{r}{s-c}=$
$\frac{r((s-a)(s-b)+(s-b)(s-c)+(s-c)(s-a))}{(s-a)(s-b)(s-c)}=\frac{r\left(a b+b c+c a-s^{2}\right)}{s r^{2}}=$
$\frac{4 R r+r^{2}}{S r}=\frac{r+4 R}{s} \Leftrightarrow 4 R=(x+y+z) s-r$.
Let $p:=x+y+z, q:=x y z$. Then $r=s q$ and $4 R=p s-r=s(p-q)$ and inequality $(\mathbf{1})$ becomes $s \leq \frac{s(p-q)}{2}+(3 \sqrt{3}-4) s q \Leftrightarrow$ $2 \leq p-q+6 \sqrt{3} q-8 q \Leftrightarrow \sqrt{3}(2-p) \leq 9 q(2-\sqrt{3}) \Leftrightarrow$
(2) $(2 \sqrt{3}+3)(2-p) \leq 9 q$.

Since inequality (2) is obvious for $p \geq 2$ then suffices to prove it for $p<2$.
Due to inequality $(x+y+z)^{2} \geq 3(x y+y z+z x)$ and Schure's Inequality
$\sum x(x-y)(x-z) \geq 0$ in the form $9 x y z \geq 4(x+y+z)(x y+y z+z x)-(x+y+z)^{3}$
we have $p \geq \sqrt{3}$ and $9 q \geq 4 p-p^{3}$, respectively.
Thus, $\sqrt{3} \leq p<2$ and then $9 q-(2 \sqrt{3}+3)(2-p)=$
$\left(9 q-4 p+p^{3}\right)+4 p-p^{3}-(2 \sqrt{3}+3)(2-p)=$
$\left(9 q-4 p+p^{3}\right)+(2-p)\left(2 p+p^{2}-(2 \sqrt{3}+3)\right)=$
$\left(9 q-4 p+p^{3}\right)+(2+p+\sqrt{3})(2-p)(p-\sqrt{3}) \geq 0$.

